

Advanced Control of Microgrids

Maryam Saeedifard

Presented at

The Great Lakes Symposium on Smart Grid and the New Energy Economy Chicago, September 2012

This presentation is a summary of the following paper:

• B.Bahrani , M. Saeedifard, A. Karimi, A.Rufer, "A Multivariable Design Methodology for Voltage Control of a Single-DG-Unit Microgrid," accepted for publication in the IEEE Trans. on Industrial Electronics.

Outline

- Introduction
- Statement of the Problem
- The Proposed Multivariable Controller
- Experimental Results
- Conclusions

• To design controllers, the model of the to-becontrolled system is essential.

• Current Control of a Grid-connected Microgrid

Statement of the Problem

- Robustness issues to uncertainties in the load parameters
- Distortion of the load voltage in presence of harmonically polluted loads

PURDUE

The Proposed Multivariable Controller

- The proposed design approach, initially proposed in [1], relies on shaping the open-loop and closed-loop transfer functions of the system through convex optimization.
- The design procedure consists of three steps:

Step 1. Determination of the (family of) spectral or nonparametric model(s) of the system

Step 2. Determination of the controller class

Step 3. Determination of the controller coefficients

[1] - A. Karimi and G. Galdos, "Fixed-order H1 Controller Design for Nonparametric Models by Convex Optimization," Automatica, vol. 46, num. 8, 2010.

PURDUE The Proposed Multivariable Controller

Step 1. Determination of the (family of) spectral or nonparametric model(s) of the system

The Proposed Multivariable Controller

Step 1. Determination of the (family of) spectral or nonparametric model(s) of the system

$$\begin{bmatrix} V_d \\ V_q \end{bmatrix} = \underbrace{\begin{bmatrix} G_{i,11} & G_{i,12} \\ G_{i,21} & G_{i,22} \end{bmatrix}}_{\mathbf{G}_{\mathbf{i}}} \begin{bmatrix} V_{t,d} \\ V_{t,q} \end{bmatrix}$$

$$G_{i,11}(j\omega) = \frac{\mathscr{F}(v_d)}{\mathscr{F}(v_{t,d})}$$
 and $G_{i,21}(j\omega) = \frac{\mathscr{F}(v_q)}{\mathscr{F}(v_{t,d})}$

$$G_{i,12}(j\omega) = \frac{\mathscr{F}(v_d)}{\mathscr{F}(v_{t,q})}$$
 and $G_{i,22}(j\omega) = \frac{\mathscr{F}(v_q)}{\mathscr{F}(v_{t,q})}$

$$\mathscr{G} = \{\mathbf{G}_{\mathbf{i}}(j\omega); i = 1, ..., 8; \forall \omega \in \mathbb{R}\}$$

The Proposed Multivariable Controller

Step 1. Determination of the (family of) spectral or nonparametric model(s) of the system

The Proposed Multivariable Controller

Step 2. Determination of the class of the controller

$$\mathbf{K}(z,\rho) = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}, \text{ and therefore, } \mathbf{L}(j\omega,\rho) = \mathbf{G}(j\omega)\mathbf{K}(j\omega,\rho)$$

• Multivariable-Proportional Integral (PI)-Resonant Controller

$$K_{21}(z) = \frac{\rho_4 + \rho_5 z^{-1}}{1 - z^{-1}} + \rho_6 \frac{b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

PURDUE

The Proposed Multivariable Controller

Step 3. Determination of the controller coefficients by loopshaping

The open-loop shaping the system with a family of \mathscr{G} is carried out by the following minimization

$$\min_{\rho} \sum_{i=1}^{m} \| \mathbf{L}_{\mathbf{i}}(\rho, j\omega) - \mathbf{L}_{\mathbf{D}}(j\omega) \|^{2}, \quad \mathbf{L}_{\mathbf{D}}(s) = \begin{bmatrix} \frac{\omega_{c1}}{s} + \frac{\omega_{c2}}{s^{2} + 2\zeta\omega_{h}s + \omega_{h}^{2}} & 0\\ 0 & \frac{\omega_{c1}}{s} + \frac{\omega_{c2}}{s^{2} + 2\zeta\omega_{h}s + \omega_{h}^{2}} \end{bmatrix}$$

Experimental Setup

Nonlinear Resistive Load Change

Experimental Results

Conclusions

- A voltage controller for islanded microgrids have been proposed.
- The proposed controller provides satisfactory dynamic performance and robustness in the presence of nonlinear loads.